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a  b  s  t  r  a  c  t

A  major  challenge  for crop  research  in  the  21st  century  is how  to predict  crop performance  as  a  function  of
genetic  architecture.  Advances  in  “next  generation”  DNA  sequencing  have  greatly  improved  genotyping
efficiency  and reduced  genotyping  costs.  Methods  for characterizing  plant  traits  (phenotypes),  however,
have  much  progressed  more  slowly  over  the  past 30  years,  and  constraints  in  phenotyping  capability  limit
our ability  to  dissect  the genetics  of  quantitative  traits,  especially  those  related  to harvestable  yield  and
stress tolerance.  As  a case  in point,  mapping  populations  for major  crops  may  consist  of  20  or  more  fami-
lies, each  represented  by  as  many  as  200  lines,  necessitating  field  trials  with  over  20,000  plots  at  a  single
location.  Investing  in the resources  and  labor  needed  to  quantify  even  a few  agronomic  traits  for  linkage
with  genetic  markers  in  such  massive  populations  is  currently  impractical  for  most  breeding  programs.
Herein,  we  define  key criteria,  experimental  approaches,  equipment  and data  analysis  tools  required  for
robust, high-throughput  field-based  phenotyping  (FBP).  The  focus  is on  simultaneous  proximal  sensing
for  spectral  reflectance,  canopy  temperature,  and  plant  architecture  where  a  vehicle  carrying  replicated
sets of  sensors  records  data  on  multiple  plots,  with  the  potential  to  record  data  throughout  the crop  life
cycle. The  potential  to  assess  traits,  such  as  adaptations  to  water  deficits  or  acute  heat stress,  several  times
during a single  diurnal  cycle  is  especially  valuable  for quantifying  stress  recovery.  Simulation  modeling
and  related  tools  can  help  estimate  physiological  traits  such  as  canopy  conductance  and  rooting  capacity.
Many  of  the  underlying  techniques  and requisite  instruments  are  available  and  in use  for  precision  crop
management.  Further  innovations  are  required  to  better  integrate  the functions  of  multiple  instruments
and  to ensure  efficient,  robust  analysis  of the  large  volumes  of data  that  are  anticipated.  A  complement  to

the  core  proximal  sensing  is  high-throughput  phenotyping  of  specific  traits  such  as  nutrient  status,  seed
composition,  and  other  biochemical  characteristics,  as  well  as  underground  root  architecture.  The ability
to “ground  truth”  results  with  conventional  measurements  is  also necessary.  The  development  of  new
sensors  and  imaging  systems  undoubtedly  will  continue  to  improve  our ability  to  phenotype  very  large
experiments  or breeding  nurseries,  with  the  core  FBP  abilities  achievable  through  strong  interdisciplinary
efforts  that  assemble  and  adapt  existing  technologies  in  novel  ways.
Published  by  Elsevier  B.V.
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. Introduction

Ensuring that agricultural production will be sufficient to sat-
sfy the needs of a human population likely to exceed 9 billion
y 2050 (http://www.unpopulation.org) presents a tremendous
hallenge for plant science and crop improvement in the 21st
entury. A fundamental step forward is to dramatically improve
henotypic prediction based on the genetic composition of lines
r cultivars. By connecting genotype to phenotype, high yielding,
tress-tolerant plants can be selected far more rapidly and effi-
iently than is currently possible. Spectacular advances in “next
eneration” DNA sequencing are rapidly reducing the costs of geno-
yping (Shendure and Ji, 2008; Jackson et al., 2011). In contrast,
lant phenotyping has improved only slowly over the past 30 years,
nd obtaining sufficient, relevant phenotypic data on a single plot
r plant-by-plant basis remains problematic. This is especially true
or complex traits such as abiotic stress tolerance and yield poten-
ial, which have particular relevance for crop improvement and
ltimately, commercial production. However, dissecting complex
raits requires an examination of thousands of lines (Myles et al.,
009). Practical application through genomic selection (Goddard
nd Hayes, 2007; Jannink et al., 2010) or genome-wide associa-
ion studies (Myles et al., 2009) will similarly involve phenotyping
housands of genetically distinct lines (reference or association
opulations) grown in replication across multiple environments

n order to assess differential expression of multiple genes (i.e.,
etection of genotype-by-environment interactions). Research to

mprove phenotyping techniques is termed “phenomics” (follow-
ng the terminology of “-omics” from plant sciences; Furbank,
009).

Recognition of the limits of current approaches in phenomics
as stimulated interest in high-throughput phenotyping methods
hat can be used to characterize large numbers of lines or individual
lants accurately and that require a fraction of the time, cost and

abor of current techniques (Montes et al., 2007; Furbank, 2009).
uch of the discussion of phenotyping systems has focused on

ntensive measurement of individual plants using platforms that
ombine robotics and image analysis with controlled-environment
ystems (e.g., Arvidsson et al., 2011). While acknowledging the
alue of these systems for certain targeted applications, the use of
reenhouses and controlled environments to represent field envi-
onments has well-known limitations. Limited greenhouse space
r chamber volumes often preclude allowing plants to flower and
et seed, making it impossible to assess effects of stresses during
eproductive growth. The soil volume that is provided for plants in
ontrolled environments usually is far less than that available to
lants in the field, affecting nutrient and water regimes and alter-
ng normal patterns of growth and development. Enclosed aerial
nvironments are also problematic for characterizing responses
elevant to field situations. In greenhouses and chambers, solar
 . .  .  . . .  . . . . .  .  . . . . . . .  .  . . .  .  .  . . .  . .  . . .  .  .  . . .  . . . .  .  . . . . . . .  .  .  . .  .  .  .  . .  . . .  .  . . . . . .  .  . .  .  110

radiation, wind speed and evaporation rates typically are lower
than under open-air conditions. Mechanical vibration can induce
physiological artifacts in plant growth (Biddington, 1986; Chehab
et al., 2009). Not surprisingly, researchers focusing on demonstra-
ble, field-level improvements in yield potential or abiotic stress
tolerance favor field-based phenotyping. Drought is a climatologi-
cal event, and Campos et al. (2004) argued that “drought tolerance
that impacts crop yield can only be assessed reliably in the field”.

Field-based phenotyping (FBP) is increasingly recognized as the
only approach capable of delivering the requisite throughput in
terms of numbers of plants or populations, as well as an accu-
rate description of trait expression in real-world cropping systems.
However, to date, most field-based phenotyping systems have
focused on rapid assessment of individual suites of traits such
as vegetation indices (Babar et al., 2006a,b) or root morphology
(Trachsel et al., 2011).

Through use of vehicles carrying multiple sets of sensors, a
FBP platform can transform the characterization of plant popu-
lations for genetic research and crop improvement. An example
of FBP requirements for maize (Zea mays L.) is instructive. The
maize nested association mapping (NAM) population consists of
25 biparental crosses, each represented by 200 lines (Buckler et al.,
2009; McMullen et al., 2009), giving a total of 5000 lines. Specialized
experimental designs combined with spatial analysis permit two
replicates, thus requiring 10,000 plots for a single treatment (e.g.,
well-watered or water-limited). Adding just one additional treat-
ment doubles the count to 20,000 plots. Using single-row, 1-m wide
by 4-m long plots and ignoring the need for walkways or borders,
the net row-length would be 80 km (roughly 50 miles), occupy-
ing 8 ha (20 acres). A person walking 3 km h−1 (2 mph) would need
about 27 h to visually score traits, assuming no stopping. Halting
at each plot for 30 s (e.g., to measure leaf conductance or chloro-
phyll concentration) would require an additional 165 h. Existing
and planned mapping populations for other crop species are of sim-
ilar scale (Table 1), so without even considering direct applications
in crop improvement, the need for high throughput is apparent.

Accomplishing FBP in a cost-effective manner will require
breakthroughs in techniques and research infrastructure. FBP
approaches will likely use wheeled or aerial vehicles to deploy mul-
tiple types of instruments that can measure plant traits on a time
scale of a few seconds per plot. However, even this sampling rate
will likely require multiple vehicles and/or multiple sets of sensors
on a single vehicle. Returning to the maize NAM example, a vehi-
cle measuring traits on single rows and traveling 2 km h−1 would
require over 40 h to cover the entire field. Using three vehicles with
eight sets of sensors per vehicle would reduce the required time to
less than 2 h, allowing up to 12 visits per day to any plot. Fig. 1 shows

a prototype FBP vehicle carrying sensors that measure plant height,
canopy temperature and spectral reflectance at three wavelengths
(Andrade-Sanchez et al., 2012). Observations are geo-referenced

http://www.unpopulation.org/
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Table  1
Scenarios for high-throughput phenotyping based on existing or proposed sets of mapping populations in barley, maize, wheat and cotton.

Crop Populations Number of
families

Total number
of linesa

Reference

Barley From ten U.S. barley breeding programs – 3840b http://www.BarleyCAP.org
Cotton Candidates being assembled from US public breeding programs (G. hirsutum) 25 5000 Proposed
Maize  Nested association mapping (NAM) based on crosses to B73 25 5000 http://www.panzea.org
Wheat  Contrasting parents from many US spring and winter wheat programs 17 3315 http://maswheat.ucdavis.edu
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a Number of lines for each population.
b Breeding lines identified as important by breeding programs.

sing GPS with a positional accuracy under 2 cm.  With the help of
PS-based auto-pilot systems, we can get closer to fully automating

he deployment of instruments at the field-scale, reducing unin-
ended human error by the driver or differences between drivers
hen using multiple vehicles.

. An integrated FBP platform

Previous experience in characterizing crop responses to water
nd nutrients, and to a lesser extent for breeding and genetics,
as established that numerous plant traits can be measured via
emote sensing of the crop canopy (Wiegand and Namken, 1966;
dso et al., 1980; Blum et al., 1982; Ball and Konzak, 1993; Li et al.,
001; Moran et al., 2003; Babar et al., 2006a,b,c).  A core challenge
f FBP is to adapt these techniques for small-plot evaluations of
iverse crops and traits. The system needs to be rapid, flexible and
eliable. Ideally, it should work at spatial scales less than 1 m,  per-
it  the evaluation of hundreds to thousands of plots in a few hours

 regardless of time of day or field conditions – and characterize
ultiple traits in a single pass. The system should permit measure-
ents to be made repeatedly throughout the season and as needed,

ncluding intensive sampling through a diurnal cycle. Complemen-
ary high-throughput analyses of leaf, seed or other samples at key
hases of crop growth may  also be required (Fig. 2).

A FBP platform requires six components:

. Instruments for acquiring raw data from field plots.

. Physical systems for integrating different instruments including
providing power, data logging or transmission, partial or com-
plete shading, and protection from dust, vibration and adverse
weather.
. Vehicles for positioning the instrument rapidly and accurately
in a field.

. High-throughput analytic capabilities to complement field mea-
surements (e.g., of leaf or seed samples).

ig. 1. High-clearance tractor in operation over young cotton plants at Maricopa,
Z.  Replicated sets of sensors allow simultaneous measurement of canopy height,

emperature, and spectral reflectance at three bandwidths. Real time kinematic GPS
rovides positional accuracy under 2 cm.
5. Software systems for managing and analyzing potentially large
and complex datasets.

6. Integrated management protocols to maximize reliability and
efficiency of the phenotyping.

We emphasize that use of field-based systems does not exclude
complementary phenotyping in controlled environments or rapid
screening for specific traits such as shoot or root architecture.

2.1. Instruments for acquiring raw data

The range of plant traits that can be evaluated directly and non-
destructively through measurements of reflectance or emissions is
increasing rapidly with advances in our understanding of plant biol-
ogy, sensor and imaging technologies, and data analysis. Example
traits range from levels of specific leaf pigments, to plant biomass,
to phenology (Table 2). While single types of measurements often
show relations with yield or biomass, FBP requires instruments that
can help to characterize multiple, interacting plant processes. This
likely will require deploying several types of instruments at once
and measuring plant responses at both diurnal and seasonal time
scales.

Instrument options are evolving rapidly, and the ability to
position instruments and sources of illumination or shading near
the foliage further increases the choices. Examples of potentially
enabling technologies include:

• Photodiodes that allow construction of low-cost sensors at spe-
cific bandwidths (Garrity et al., 2010), including versions that
incorporate built in signal conditioning and optical filters.

• High intensity light emitting diodes, which deliver continuous or
pulsed photon fluxes, while drawing relatively little power (Yeh
and Chung, 2009), thus allowing novel options for active sensing.

• Infrared imagery using commercial digital cameras and accurate
infrared thermometers (IRT, French et al., 2007).

• Stereo image analysis, which shows potential for characterizing
plant height, leaf shape and leaf angle distribution (Biskup et al.,
2007; Yu et al., 2007).

• Acoustic-based distance sensing (Ruixiu et al., 1989; Andrade-
Sanchez et al., 2012)

• Systems for non-contact measurement of chlorophyll fluores-
cence as an indicator of photosynthetic performance (Kolber
et al., 2005).

• Other examples include laser distance sensing and near infrared
spectroscopy.

Airplane and satellite-based systems are invaluable sources of
information at field to regional scales, but proximal (close-range)
sensing is often the only approach that can provide adequate reso-
lution for phenotyping studies. Besides allowing higher resolution
sensing, an FBP system can provide multiple view-angles, control

illumination and regulate the distance from the target to the sen-
sors. In remote measurement of plant water content, atmospheric
water vapor and aerosols introduce a significant background sig-
nal (Gao, 1996) but with proximal sensing, this constraint is greatly

http://www.barleycap.org/
http://www.panzea.org/
http://maswheat.ucdavis.edu/
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Table 2
Examples of proximal sensing methods that show promise for field-based phenomics. IR = Infrared; NIR = near infrared.

Trait class Target trait Index or method Applications or relevant traits Point (P) or
image-based (I)

Wavelengths References

Pigment constituents Chlorophyll Normalized difference
vegetation index (NDVI)
Canopy chlorophyll content
index (CCCI)

P Red, NIR

720 and 790 nm

Tucker (1979)
Barnes et al. (2000)

Carotenoids Green atmospherically
resistant vegetation index
(GARI)

Chlorophyll concentration, rate
of photosynthesis

P/I 550 and 860 nm Gitelson et al. (2006)

Non-pigment constituents Cellulose Cellulose absorption index
(CAI)

Bioenergy potential. P 2100 nm Daughtry (2001); Kokaly et al.
(2009)

Nitrogen NDVI & CCCI Plant nitrogen status,
especially under stress

P 670, 720, 790 nm
670 and 770 nm;  590 and
880 nm

Tilling et al. (2007)
Bronson et al. (2011)

Lignin  Cellulose absorption bands Stress responses. Bioenergy
potential.

P  Kokaly et al. (2009)

Photosynthesis Photosystem II activity Photochemical reflectance
index (PRI)

Diurnal radiation use efficiency P 531 and 570 nm Gamon et al. (1997)

Photosystem II activity Chlorophyll fluorescence Stress effects on
photosynthesis

P/I Baker and Rosenqvist (2004)

Water  relations Transpiration or canopy
conductance

Canopy temperature (CT)
Crop water stress index (CWSI)

Instantaneous transpiration
and hence crop water status.

P/I Thermal IR Jackson et al. (1981); Blum
et al. (1982); Wanjura et al.
(1984); Chaudhuri et al. (1986)

Normalized water index (NWI) Crop water status P 850, 900 and 970 nm Babar et al. (2006c); Gutierrez
et al. (2010)

Canopy  water content Normalized difference water
index (NDWI)

Crop water status P 860 and 1240 nm Gao (1996)

Water  content Leaf water thickness (LWT) P 1300 nm and 1450 nm
1500–1700 nm

Seelig et al. (2008)
Li et al. (2001)

Plant  growth Leaf area index NDVI Overall growth P Red, NIR Babar et al. (2006a)
Plant
biomass

NDVI  Overall growth P 590 and 880 nm;  670 and
770 nm

Bronson et al. (2011)

NWI Overall growth P 850, 880, 920 and 970 nm Prasad et al. (2009)

Plant  architecture Canopy height Close-range photogrammetry Light interception, overall
growth, lodging resistance

I Visible or NIR Biskup et al. (2007); Frasson
and Krajewski (2010)

Ultrasonic Canopy height and width P (Ultrasonic) Ruixiu et al. (1989)
Depth  camera Canopy height and width; leaf

orientation and size
I Infrared Chéné et al. (2012)

Phenology Maturity Time series of index
Time series of fluorescence

Tracking leaf senescence
Anthocyanin levels

I
P

Green, red Idso et al. (1980)
Ghozlen et al. (2010)

Flower number Image analysis Plant development I Visible Adamsen et al. (2000); Thorp
and Dierig (2011)

Multiple stages Analysis of time series of
indices

Seedling emergence, onset of
grain-filling, senescence

P + I 400–900 nm Viña et al. (2004)
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ig. 2. Diagram of possible flows of data in relation to traits measured over the lif
maging at frequent intervals, laboratory analyses of samples taken at specific int
ombine harvesting.

educed. For many crops, close-range field access may  permit posi-
ioning of sensors or sources of illumination at the base or side of
he canopy, allowing measurement of transmittance rather than
eflectance (Fig. 3).

Canopy reflectance from visible to near infrared is measured
t either a few selected wavelengths (i.e., multi-spectral; Bronson
t al., 2003) or as hyper-spectral data (1–2 nm bandwidths rang-
ng from 270 to 1100 nm;  K.R. Thorp, personal communication).
eflectance data are often used to calculate an index, such as the
ormalized difference vegetative index (NDVI). Tucker (1979) was
ne of the first to propose red NDVI as (RNIR − Rred)/(RNIR + Rred),

here RNIR and Rred are reflectance in the near infrared (NIR)

nd red regions, respectively. Hyperspectral reflectance data have
een subject to principal components regression in order to esti-
ate plant parameters such as cotton lint yield, biomass and plant

ig. 3. Examples of possible locations of sensors or cameras (S) and high-intensity illumi
nd  thus infer light interception or canopy architecture at specific wavelengths.
e of an annual seed crop. Types of data acquisition include: proximal sensing and
, and near-infrared spectroscopy (NIRS) of seed for oil or protein content during

nitrogen content (Bronson et al., 2005). K.R. Thorp (personal com-
munication) combined hyperspectral data with radiative transfer
and crop simulation models to estimate wheat yield, leaf area index
(LAI), biomass and nitrogen content.

Because sensor and imaging technologies are evolving rapidly,
an initial research objective should be to assemble and evaluate a
suite of sensors and imaging tools that compare well-established
and novel instruments. Testing should initially focus on the bio-
logical utility of data, requiring “ground truth” comparisons with
conventional field (e.g., hand-held instruments) or laboratory mea-
surements. It is also essential to develop well-defined, readily

implemented methods of standardization to ensure reliability of
data collection from multiple instruments located at different
geographical sites. For dynamic plant responses such as canopy
temperature or leaf angle, the appropriate temporal scale and time

nation (HIL) suspended above or below the crop canopy to measure transmittance
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Fig. 4. Variation in canopy temperatures recorded at different temporal scales. (A)
Temperatures measured at 10:11 AM along a 104 m long plot containing 11 Pima
cotton lines. Vertical lines indicate positions of 0.9 m-wide walkways. (B) Canopy
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Fig. 5. Helicopter-mounted integrated instrument system carrying three types of

ments over field plots, or even individual plants. Vehicle options
nd  air temperatures measured over 3 days on a well-watered plot of the spring
heat Yecora Rojo.

f measurement should be carefully evaluated. For instance, canopy
emperatures recorded as a sensor passes along a series of plots

ight reveal important plant-to-plant variation at a sub-second
ime scale, whereas temperature variation over a diurnal cycle
ould largely reflect effects of daytime transpiration vs. nighttime

adiative cooling.
As a specific example of the challenges in acquiring data, we

resent the case of canopy temperature measured at different
patial and temporal scales. Canopy temperatures of Pima cotton
Gossypium barbadense L.) plants measured at 10:00 AM along a
00 m row (transect) containing 11 plots of different cotton lines
Fig. 4A) showed expected differences in mean canopy temperature
mong the cultivars (e.g., cv. Old Pima vs. P53). Less expectedly, it
lso revealed differences that were likely related to variation in
lant stand and soil texture. The higher and more variable tem-
eratures for cv. S.I. St. Vincent V-135 were associated with the

ower stand density (2 plants m−2) compared to 7 plants m−2 for
he other plots, suggesting that the IRT registered emissions from
oil as well as plant canopy. Temperatures for the plot of Pima
-5 centered at 99 m along the transect were warmer and more
ariable than for the plot at 23 m.  Comparison of plot positions
ith soil texture (from a geospatial analysis) indicated that the
lot at 99 m was  on a sandier soil with lower water holding capac-

ty. These measurements were taken at mid-morning when canopy
emperatures were rising with air temperature and solar radiation.

easurements at other times of day will reflect different balances
f ecophysiological processes and thus may  provide information on
ifferent plant processes or traits. Thus, canopy temperatures mea-
ured from a well-watered plot of wheat (Triticum aestivum L.) over
2 h showed large variations in the difference between canopy and
ir temperature (Fig. 4B).

Additional concerns for sensor testing include how the field of
iew, vertical and horizontal position, and speed of travel affect

easurements. Kimes (1981) demonstrated that inverse model-

ng of IRT measurements obtained with multiple view angles can
mprove estimation of the effective canopy temperature. Another
cameras: multispectral, infrared and conventional digital for visible light. Note the
backplate of the multispectral imager (upper left) which has seven connectors, four
of which require connection during field use.

criterion is how sensitive the instruments are to environmental
conditions, especially temperature, humidity and dust. The overall
goals for sensor research would not be to only identify promising
initial sets of sensors but to develop testing protocols that help
accelerate the adoption and effective use of future instruments.

2.2. Systems for integrating instruments

Electronic instruments require robust but flexible physical
mounting, electrical power, connections to data loggers and
in some cases, controlling software. The Duncan Technologies
MS3100 imager, as deployed on our helicopter instrument system,
is illustrative (Fig. 5). The camera required four cable connections
for field use: one for control, two for data transfer and one for
electrical power.

To link observations to individual plots, plants or positions
within plants, position data (coordinates) from on-board real time
kinematic (RTK) GPS with 2-cm or better accuracy need to be
linked to the data acquired from instruments. The electrical sup-
ply should support artificial illumination for active sensing and/or
night operation, stepper motors used to vary instrument view
angles, temperature controllers, robotic devices (e.g., calibration
targets, shade screens and samplers) and data logging or transmis-
sion.

Data acquisition per se involves integrating the data from
multiple instruments, typically with individual, proprietary com-
munication protocols. Digital memory devices may  prove either too
slow or too sensitive to vibration. Sensor outputs often require con-
version to compatible digital formats (e.g., millivolt outputs from
infrared thermometers and photodiodes). The logging system must
also provide reliable mechanisms to transfer data.

2.3. Vehicles for positioning instruments

FBP requires a means to rapidly and accurately position instru-
include high-clearance tractors (Schleicher et al., 2003; Andrade-
Sanchez et al., 2012), linear-move or central-pivot irrigation
systems (Kostrzewski et al., 2003; Colaizzi et al., 2003; Haberland
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Table  3
Comparison of five vehicle options for field-based phenomics.

Criteria High-clearance
tractor

Crane or linear
move

Cable robot Helicoptera Aerostatb

Maximum payload 200 kg Over 500 kg 100 kg 400 kg 10 kg
Portable Yes Limited No Yes Limited
All  weather operation No Yes Yes No No
Potential for damage to plants, soil compaction, or

transmission of pathogens
Yes No No No No

Type  of operator required Driver Technician Technician Pilot plus assistant Technician
Power  supply On-board On-board or cable Battery or cable Battery Battery or cable
Random access to field positions, with start/stop No Yes Yes Yesc Yes
Potential for high-frequency vibration Yes No No Yes No
Minimum sensor distance to canopy 10 cm 10 cm 10 cm 160 mc 1 m
Maximum vertical clearance 2 m 5 m 5 m > 100 m > 10 m
Can  support sensors spaced for multiple rows Yes Yes Weight limited No Weight limited
Based on well-established engineering Yes Yes No Yes Yes
Base cost (exclusive of fuel, operators, maintenance, etc.) $100,000 ? ? $1,000 per 1 h flight $3,000
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Based on contracted research flights at Maricopa, AZ and assumes a Hiller UH-12E
Based on a 6 m3 capacity with helium as the lifting gas.
US FAA regulations limit helicopter flights to a minimum ceiling of 160 m (500 ft) 

t al., 2010), manned fixed- and rotary-wing aircraft (French et al.,
007), unmanned aircraft (Hunt et al., 2005; Hakala et al., 2010)
nd tethered aerostats (Jensen et al., 2007; Ritchie et al., 2008).
ach option has strengths and weaknesses. For instance, tractors
ffer close proximity to plants but can compact the soil, damage
eaves and stems, and propagate diseases and pests. Aircraft can
over large areas rapidly but cannot be used in inclement weather,
ave high operating costs and may  not permit adequate resolu-
ion. Five vehicle options are discussed further below, with various
riteria tabulated in Table 3.

.3.1. High-clearance tractors
High-clearance tractors are readily available, reliable and trans-

ortable. However, even with wheels powered by electric or
ydraulic drive, their vertical clearance and maneuverability have

imits, and they may  not be able to enter fields after irrigation or
recipitation events. The requirement for an experienced operator

ncreases the cost of operation, especially for studies that require
ontinuous measurements over 24 h or longer periods. Neverthe-
ess, because of their availability and ease of use, high-clearance
ractors will likely play a central role in FBP.

There also is scope for developing lighter-weight, unmanned
eld vehicles. For research fields where vehicle traffic can be
estricted to designated strips or berms, lower-clearance vehicles
quipped with cantilever booms that extend over plots can be used.

.3.2. Crane-like vehicles
Numerous configurations of crane-like vehicles can be envis-

ged, but most options appear constrained by the cost of spanning
istances of 50 m or more. A modified linear-move irrigation sys-
em appears to be the only system that has been deployed over large
eld areas (Haberland et al., 2010). At the Maricopa Agricultural
enter (MAC), a linear-move was adapted to carry reflectance and

nfrared sensors mounted on a trolley that ran parallel to the main
pan, which measured 100 m and traveled the length of a 100 m-
ong field. The system, called the Agricultural Irrigation Information
ystem (AgIIS, pronounced “Ag Eyes”), was used to characterize
ater and nitrogen stress for plots within a field of a single cotton

ultivar. AgIIS obtained multi-spectral data for vegetation, nutrient
nd water status indices at a spatial resolution of 1 m (Kostrzewski
t al., 2003; Colaizzi et al., 2003; Haberland et al., 2010). The linear-
ove system retained its capabilities for irrigation and was also
sed to apply fertilizers and pesticides. Discussions with vendors
f linear moves indicate that the speed, control and positional accu-
acy can be improved through use of variable speed motors coupled
ith RTK GPS.
opter.

al areas.

2.3.3. Cable robots
Cable-suspended robots, pioneered at the National Institute of

Standards and Technology (NIST) in the 1980s (Albus et al., 1993),
provide an option for a vehicle that can operate continuously over
a field without physical contact of the vehicle with the soil or
plants. An integrated set of instruments would be suspended from
cables supported by towers at the outside corners of the field.
Position within the field would be controlled by cable winches
and software. Cable robots are widely used for positioning cam-
eras in the entertainment industry (e.g., for filming sporting events
and action movies). Tests with a manually operated 1:17 scale
prototype demonstrated the feasibility of the approach for large
land areas but highlighted the difficulty of maintaining a constant
instrument height, especially if sensors must remain level (White
and Bostelman, 2011). However, alternative cabling configurations
can reduce these problems. Besides refining the basic design, safety
and maintenance are also concerns for continuous operation under
field conditions.

2.3.4. Helicopters
Manned helicopters represent a mature technology capable of

carrying a large payload and supplying power to an instrument
system. The foremost constraint is not being able to hover close
to the crop due to rotor downwash and regulations on minimum
safe altitudes. Thus, to resolve plots, only imaging is appropriate.
For a helicopter flying at a height of 150 m,  our experience suggests
resolutions of 10–50 cm are feasible. Cost of operation is also high.
In Arizona, helicopter rentals were roughly US$1000 per hour.

Unmanned helicopters are a promising alternative to manned
aircraft. They allow flying at much lower altitudes and cost far
less to operate (Berni et al., 2009; Merz and Chapman, 2011). The
system of Merz and Chapman (2011) carried a 2.1 kg payload for
a 30 min  flight. Zarco-Tejada et al. (2009) imaged 0.6 ha of citrus
orchards using hyperspectral and infrared cameras. There is uncer-
tainty over how regulations will affect unmanned flights. Current
US regulations require that flights for experimental and commer-
cial purposes have Federal Aviation Authority (FAA) approval (FAA,
2012). However, tethered vehicles that maintain a height less than
45 m appear not to require approval (Pratt et al., 2008), and a com-
mercial tethered, quad-rotor platform reportedly can maintain a
20 kg payload aloft indefinitely, receiving electrical power via its
tether (Israel Aerospace Industries Ltd., 2002).
2.3.5. Aerostats
Helium-filled tethered aerostats (balloons) are available com-

mercially for surveillance applications. An aerostat measuring 2 m
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n diameter by 1.8 m high can carry a 2 kg payload (Aerial Products,
008). Concerns with aerostats include accurate positioning and
rientation, especially under windy conditions, and providing safe
torage when not in use. Jensen et al. (2007) described use of a 1.8 m
erostat to monitor response of wheat to nitrogen using color and
ear-infrared images acquired with digital cameras. Ritchie et al.
2008) used a similar two-camera system to monitor NDVI in a cot-
on irrigation study. In the USA, tethered balloons are also subject
o FAA regulation (FAA, 2012).

.4. High-throughput analysis of plant samples

Proximal sensing is best suited to characterize traits that are
irectly linked to externally detectable features of the crop or to
raits that can be estimated indirectly from statistical or ecophysi-
logical modeling. However, situations likely will arise where plant
issues will be sampled in the field and then taken to a laboratory
or chemical, anatomical or other analysis. Robotic stations adapted
or grinding, weighing and analysis of plant tissue (Gomez et al.,
010; Santoro et al., 2010) facilitate high throughput for chemical
nalyses. Measurements of leaf traits such as leaf venation pattern
r stomatal density may  require robotic sample preparation com-
ined with image analysis. Perhaps the biggest challenge for field
ampling of plant tissue is how to obtain, identify and conserve the
amples prior to analysis.

The harvest per se requires automation through use of small plot
ield monitors. Combine-mounted near-infrared spectroscopy can
easure protein or oil content of seed (Long et al., 2008). Auto-
ated systems for subsampling harvested material for subsequent

nalyses would facilitate further characterizations.

.5. Management of data flow and analysis

After data are logged and transferred to a computing facility,
ubsequent processing and management present further chal-
enges. Data should be processed rapidly to check for errors and to
uide subsequent measurements, plant sampling or pollinations.
urther analyses can enhance the information value of the mea-
urements (Fig. 6). Basic post-processing might involve extraction
f values for traits such as canopy structure (row height and width)
r calculation of spectral indices. Reflectance-based indices such
s NDVI may  be converted to LAI values through simple equations
Wiegand et al., 1992).

Analyzing time series data from crop research is challenging
ecause many observed traits are autocorrelated and integrate the
ffects of multiple, underlying physiological processes that oper-
te at different time scales. Mixed model analysis can account for
utocorrelation (Piepho et al., 2004) but may  require that plots be
ampled using common, fixed time intervals. Moreover, the antici-
ated large numbers of plots and samples may  require exceptional
omputational resources. Conventional analyses of time series also
gnore knowledge of underlying physiological processes. Zhao et al.
2004) proposed a method for estimating quantitative trait loci
QTL) for parameters of the Richards growth curve.

A more efficient approach may  be to model time series data as
 function of known ecophysiological responses using simulation.
hrough “inverse modeling”, cultivar-specific parameters such as
or photoperiod sensitivity, root–shoot portioning or representa-
ive unit grain weight would be estimated through comparison
f simulation outputs with “measured” data, where the measured
ata are estimated from proximal sensing. The model parameters
hould represent more biologically fundamental and meaning-

ul traits (White and Hoogenboom, 1996; Messina et al., 2006;
eymond et al., 2003; Baret et al., 2007). Because the modeling
rocess partially filters out effects of environment and manage-
ent, such traits should have relatively high heritabilities and
earch 133 (2012) 101–112

strong associations with genetic loci or molecular markers (Bertin
et al., 2010). Incorporation of simulation modeling in the research
process can facilitate estimation of performance landscapes and
integration with tools such as QU-GENE that simulate plant breed-
ing options (Podlich and Cooper, 1998; Messina et al., 2011).

Image analysis can improve separation of background (usually
soil) from the plant canopy and open myriad options for quantify-
ing plant architecture (Biskup et al., 2007), flower or fruit numbers
(Adamsen et al., 2000; Thorp and Dierig, 2011) and other traits. The
iPlant Collaborative’s PhytoBisque project seeks to provide a high-
throughput platform for image analysis via the iPlant Discovery
Environment (Goff et al., 2011).

Considering the scenario for the maize NAM populations
(Table 1), the quantity of data to be managed requires careful review
in terms of storage and processing requirements. A single pass of
20,000 plots with four 10 mega-pixel images per plot (e.g., three
in the visible spectrum to infer canopy architecture and one ther-
mal  infrared image for canopy temperature) stored with a 1:10
data compression would generate 80 GB of data. For routine crop
improvement, researchers might only store data on derived traits
but for more basic research, the entire dataset would be archived.
If file transfer, merging and processing each set of images required
10 s plot−1, the net processing time for all plots would be approxi-
mately 60 h.

Data representation and communication standards have recog-
nized value in promoting efficient analysis of large datasets, but
there is a staggering array of proposed standards (Brazma et al.,
2006). Examples potentially relevant to FBP include the Interna-
tional Consortium for Agricultural Systems Applications standard
for describing field experiments (Hunt et al., 2001), the Minimum
Information About a Microarray Experiment standard (MIAME;
Brazma et al., 2001) and the NetCDF standard developed for remote
sensing datasets (Rew et al., 1997). We  expect that given the
breadth of data acquired in FTP that elements of multiple standards
should be incorporated.

2.6. Integrated management of FBP

Converting a prototype FBP system into an efficient tool for
screening thousands of plots is far more complex than sim-
ply deploying prototype vehicles with sensors and data loggers.
Trained personnel are required to operate and maintain the vehi-
cles, instruments and software. Standard operating procedures are
needed to ensure reliable performance throughout an experiment,
including crop management, instrument calibration, data transfer
and initial analysis, and vehicle maintenance.

Field management per se should seek to minimize or control
within-field sources of variation. This can involve characterizing
fields for variability in soil texture and at the onset of each experi-
ment, characterizing within field variability in initial soil nitrogen
and moisture. Drip or low pressure aerial irrigation can minimize
variability from irrigations. In-field portable weather stations capa-
ble of recording solar radiation, air temperature and humidity, wind
speed and direction, and precipitation are required to analyze crop
performance in relation to growing season conditions. Vehicle-
mounted solar radiation, humidity and air temperature sensors
may  be required for optimal analysis of IRT data.

3. Challenges

The challenges for plant science to enable requisite increases

in crop productivity while conserving the natural resource
base for agriculture are daunting, but there are promising
avenues to greatly enhance our capabilities to exploit genetic
diversity through integration of phenomics with genomics. By
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Fig. 6. Examples of possible paths of data analysis whereby field measurements are processed to provide more biologically meaningful data. Field data usually would be recorded as time series, allowing estimation of growth or
developmental rates.
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roviding powerful new capabilities for phenotyping large num-
ers of field plots, there is a clear research path that can transform
BP. While not all of the components of an FBP system are in
lace, the research problems appear tractable, having numerous
otential solutions. However, due to the need for highly inte-
rative approaches, efforts to advance FBP cannot rely solely
n individual researchers or small groups iteratively pursuing
ocal solutions. Attaining the phenotyping capability that will
llow agriculture to address climate change, food security, and
ioenergy requires coordinated and sustained efforts with ade-
uate resources to test and develop the necessary infrastructure
nd procedures. Recently established Australian and European
henomics centers (e.g., http://www.plantphenomics.org.au and
ttp://www2.fz-juelich.de/icg/icg-3/jppc)  are indicative of the
rowing interest in high-throughput technologies and of the
otential for developing the relatively large, integrated research

nfrastructure required for FBP.
Throughout this discussion we have avoided emphasizing

pecific traits. This reflects our conviction that searching for
ingle indices that correlate strongly with yield is unlikely to
rovide more information than simply analyzing yield differ-
nces. A given yield level is often attainable through multiple
echanisms, and the optimal combination of traits for one

nvironment often differs from that required in another. The
hallenge of phenotyping is to provide data on those underlying
echanisms.
Our FBP experiences to date suggest priority research needs.

oremost is effectively managing the data streams, starting with
eld acquisition and ending with genetic analysis or application in
lant breeding. Accumulating large volumes of unprocessed data

s remarkably easy. However, simply combining data from differ-
nt sensors and from a GPS receiver can require extensive custom
rocessing with a geographic information system (GIS) and other
oftware tools. A second priority is to develop protocols for testing
romising instruments. While demonstrating that a given instru-
ent provides potentially useful descriptions on plant traits, the

emanding conditions for FBP require testing for features includ-
ng ease of calibration, temperature stability and ease of integration
n the overall data stream. Better algorithms for analyzing proximal
ensing data are also needed. Inverse modeling appears especially
romising but to date has seen limited application. Implicit in
he efforts to integrate the FBP components lies the challenge of

aintaining balance among numerous potentially exciting lines of
esearch.

In modern crop improvement, management of intellectual prop-
rty is a continuous concern. There are surprisingly broad US
atents relating to methods for inferring plant characteristics. US
atent 5,764,819 awarded to Orr et al. (1998) describes “meth-
ds for classifying plants for evaluation and breeding programs
y use of remote sensing and image analysis technology.” While
atents can allow inventors to recover their research investments
hrough royalties, Heller (2008) emphasized that patenting com-
onent technologies can inhibit innovation in systems that require
ssembling multiple components, such as the instruments and soft-
are required for FBP. The basic principles and applications of
roximal sensing appear to be well-established and to lack the
ovelty required to justify patents. Innovation is needed, however,

n design of specific instruments. If sufficiently novel, these might
ustify application for patents. Outputs from specific instruments
ften are in proprietary formats, which also complicate integration
f components. Obviously, for public research, instruments are pre-
erred whose outputs and controls are readily accessed without use

f additional proprietary hardware or software, and an overall phi-
osophy of open architectures and software using “off the shelf”
lectronic components will help stimulate collaborative develop-
ent. The Cubesat program, which promotes development of low
earch 133 (2012) 101–112

cost satellites that conform to an open design standard (Woellert
et al., 2010), may  provide a useful model.

Advances in instruments, computers, software or other com-
ponents will undoubtedly impact FBP in the coming 10–20 years.
Readily predicted trends include decreased costs of hyperspectral
sensors, increased resolution of imaging devices, greater capacity
for data storage, faster processing in computers and improved algo-
rithms for image analysis. The impact of novel instruments is less
easily anticipated. A recent example is the infrared time-of-flight
camera developed by PrimeSense (2012).  The single chip system
measures the distance to the target with a resolution of 640 by
480 pixels. Although primarily sold in the Microsoft Kinect video
game controller, the system is also marketed to software develop-
ers for other platforms and applications. Chéné et al. (2012),  in what
appears to be the first published application with plants, showed
that this distance camera can resolve individual leaves, allowing
automated measurement of leaf orientation.

Tools developed in FBP should also find applications in other
fields including crop and range management, weed science, plant
pathology, and insect pest management. In principle, these disci-
plines all seek to describe plant phenotypes. FBP differs primarily in
its emphasis on characterizing the large numbers of plots required
for genetic studies and crop improvement. Many of the techniques
that show progress for FBP were developed for nitrogen or water
management (e.g., Pinter et al., 1979; Jackson et al., 1981), and there
are numerous other examples of remote and proximal sensing in
agriculture (e.g., Nilsson, 1991, 1995; Riley, 1989; Chaerle et al.,
2006; Oerke et al., 2006).

4. Conclusion

Advances in crop improvement were largely responsible for the
first green revolution, which doubled crop yields in less than 50
years. If yields are to double again over the next 50 years, crop
improvement must achieve unprecedented increases in productiv-
ity and resource use efficiency. Next generation genotyping tools
for characterizing sequence variation appear capable of providing
the requisite throughput and resolution. However, modern phe-
notyping technology currently lags that of genotyping. The FBP
approach described here appears capable of attaining the requi-
site high levels of throughput. Reflecting the complex, dynamic
nature of plant responses to the environment, FBP requires inte-
grative, interdisciplinary teamwork and meticulous attention to
quality control at all stages, starting with field preparation and
experimental design, followed by timely processing and analysis of
data, and ending with direct application toward finding solutions
to major problems currently limiting crop production.
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